Geometry: 7.1-7.3 Notes

7.1 Angles of Polygons

Date:
Date.

NAME

Define Vocabulary:

diagonal

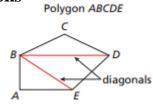
equilateral polygon

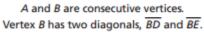
equiangular polygon

regular polygon

Using Interior Angles Measures of Polygons

In a polygon, two vertices that are endpoints of the same side are called *consecutive vertices*. A **diagonal** of a polygon is a segment that joins two nonconsecutive vertices.



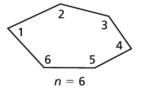


Theorems

Theorem 7.1 Polygon Interior Angles Theorem

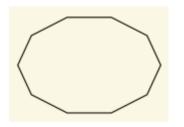
The sum of the measures of the interior angles of a convex *n*-gon is $(n - 2) \bullet 180^{\circ}$.

$$m \angle 1 + m \angle 2 + \dots + m \angle n = (n-2) \bullet 180^{\circ}$$



Examples: Find the sum of the measures of the interior angles.

WE DO



YOU DO

The coin shown is in the shape of an 11-gon

Examples: Find the number of sides of the polygon.

WE DO

The sum of the measures of the interior angles of a convex polygon is 1800°. Classify the polygon by the number of sides

YOU DO

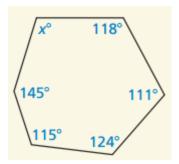
The sum of the measures of the interior angles of a convex polygon is 2520°. Classify the polygon by the number of sides

Corollary 7.1 Corollary to the Polygon Interior Angles Theorem

The sum of the measures of the interior angles of a quadrilateral is 360°.

Examples: Find the unknown interior angle measure.

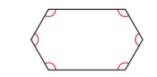
WE DO



YOU DO

The measures of the interior angles of a quadrilateral are x° , $3x^{\circ}$, $5x^{\circ}$, and $7x^{\circ}$. Find the measure of all the interior angles. In an **equilateral polygon**, all sides are congruent.

In an **equiangular polygon**, all angles in the interior of the polygon are congruent.

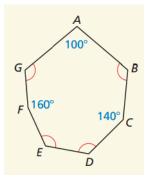


A regular polygon is

a convex polygon that is both equilateral and equiangular.

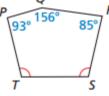
Examples: Finding angle measures in polygons.

WE DO

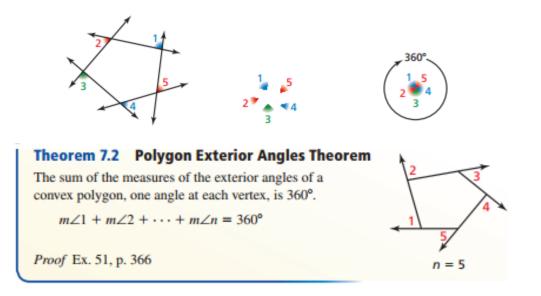


Q

Find the measures of $\angle S$ and $\angle T$.

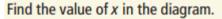


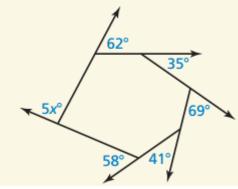
- a. Is the polygon regular? Explain your reasoning.
- b. Find the measures of $\angle B$, $\angle D$, $\angle E$, and $\angle G$.



Examples: Finding an unknown exterior angle measure.

WE DO



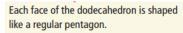


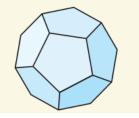
YOU DO

A convex hexagon has exterior angles with measures 34° , 49° , 58° , 67° , and 75° . What is the measure of an exterior angle at the 6^{th} vertex?

Examples: Finding angle measure of regular polygons.

WE DO





a. Find the measure of each interior angle of a regular pentagon.

b. Find the measure of each exterior angle of a regular pentagon.

YOU DO

a. Find the measure of each interior angle and each exterior angle of a regular 24-gon.

b. Each exterior angle of a regular polygon has a measure of 18°. Find the number of sides of the regular polygon.

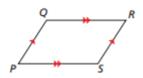
Assignment

Define Vocabulary:

parallelogram

Using Properties of Parallelograms

A **parallelogram** is a quadrilateral with both pairs of opposite sides parallel. In $\Box PQRS, \overline{PQ} \parallel \overline{RS}$ and $\overline{QR} \parallel \overline{PS}$ by definition. The theorems below describe other properties of parallelograms.



Theorem 7.3 Parallelogram Opposite Sides Theorem

If a quadrilateral is a parallelogram, then its opposite sides are congruent.

If PQRS is a parallelogram, then $\overline{PQ} \cong \overline{RS}$ and $\overline{QR} \cong \overline{SP}$.

Proof p. 368

Theorem 7.4 Parallelogram Opposite Angles Theorem

If a quadrilateral is a parallelogram, then its opposite angles are congruent.

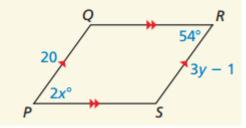
If *PQRS* is a parallelogram, then $\angle P \cong \angle R$ and $\angle Q \cong \angle S$.

Proof Ex. 37, p. 373

Examples: Using properties of parallelograms.

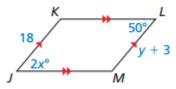
WE DO

Find the values of x and y.



YOU DO

Find the values of x and y.



If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

If *PQRS* is a parallelogram, then $x^{\circ} + y^{\circ} = 180^{\circ}$.

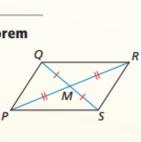
Proof Ex. 38, p. 373

Theorem 7.6 Parallelogram Diagonals Theorem

If a quadrilateral is a parallelogram, then its diagonals bisect each other.

If PQRS is a parallelogram, then $\overline{QM} \cong \overline{SM}$ and $\overline{PM} \cong \overline{RM}$.

Proof p. 370



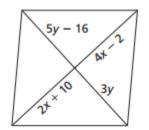
D

R

Examples: Find the value(s) of the variable(s) in the parallelogram.

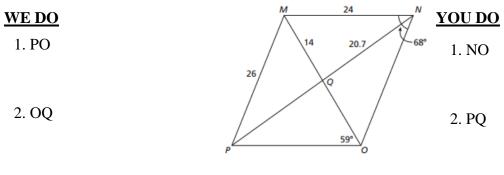
WE DO

YOU DO



k+4 8 m 11

Examples: Use the diagram to find the indicated measure.



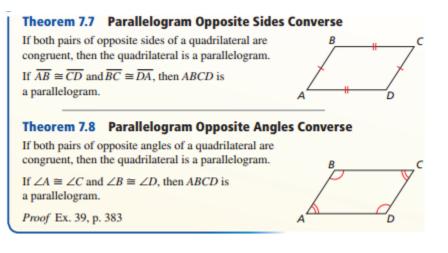
3. *m∠PMN*

3. *m∠OPM*

4. *m∠NOP*

4. *m∠NMO*

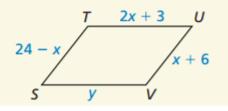
|--|



Examples: Finding side lengths of a parallelogram.

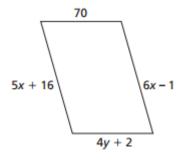
WE DO

For what values of *x* and *y* is quadrilateral *STUV* a parallelogram?



YOU DO

Find the values of x and y that make the quadrilateral a parallelogram.



Theorem 7.9 Opposite Sides Parallel and Congruent Theorem

If one pair of opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram.

If $\overline{BC} \parallel \overline{AD}$ and $\overline{BC} \cong \overline{AD}$, then ABCD is a parallelogram.

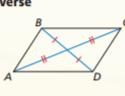
Proof Ex. 40, p. 383

Theorem 7.10 Parallelogram Diagonals Converse

If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

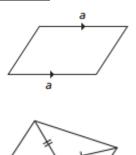
If \overline{BD} and \overline{AC} bisect each other, then ABCD is a parallelogram.

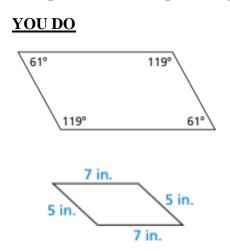
Proof Ex. 41, p. 383



Examples: State which theorem you can use to show that the quadrilateral is a parallelogram.

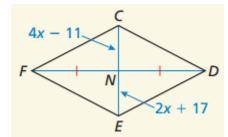
WE DO



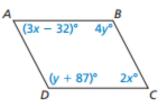


Examples: Find the value(s) of the variable(s) that make the quadrilateral a parallelogram.

WE DO



YOU DO



1. Show that both pairs of opposite sides are parallel. <i>(Definition)</i>	Ź"
2. Show that both pairs of opposite sides are congruent. (Parallelogram Opposite Sides Converse)	Ź.,
3. Show that both pairs of opposite angles are congruent. (Parallelogram Opposite Angles Converse)	
4. Show that one pair of opposite sides are congruent and parallel. (Opposite Sides Parallel and Congruent Theorem)	,
5. Show that the diagonals bisect each other. (Parallelogram Diagonals Converse)	

Assignment